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Effects of Electronic Quantum Interference,
Photonic-Crystal Cavity, Longitudinal Field and

Surface-Plasmon-Polariton for Optical Amplification
Danhong Huang, D. A. Cardimona and Paul M. Alsing

(Invited paper)

Abstract— Some possibilities for coherent optical amplification
of a normally-incident and weak radiation field are reviewed
based on various physical mechanisms, such as electronic quan-
tum interference induced by a coupling laser field in a three-level
system, field enhancement through the cavity confinement of a
radiation field in a photonic crystal and field concentration seen
in a transmitted near field through a metallic surface grating
due to excitation of surface-plasmon-polariton modes. Numerical
results are presented and discussed to demonstrate these inter-
esting effects. The important role played by a longitudinal field
resulting from the absorption by an induced three-dimensional
plasma wave inside a doped semiconductor is analyzed using a
nonlocal and non-adiabatic model.

Index Terms— amplification, quantum interference, surface-
plasmon-polariton, photonic crystal, longitudinal field.

I. INTRODUCTION

ELECTRONIC quantum interference in a multi-level
atomic system can originate from the superposition of

a direct transition of electrons and an indirect transition
of electrons mediated by a self-absorption of spontaneous
photons after a probe field is applied resonantly. A complete
theory [1] for the radiative decay of excited electrons in an
atomic system requires a full quantum electrodynamic treat-
ment of both the electromagnetic (EM) field and the electrons.
Using this approach one finds that in addition to the usual
diagonal radiative-decay process, there exists an off-diagonal
radiative-decay coupling (ODRDC) effect that becomes very
important when two or more electron transition energies
are very close [2]. The ODRDC effect describes a nearly-
resonant absorption of a spontaneously emitted photon from
the downward transition of one electron by another electron
that subsequently transits upward to a close-by different level.
By properly tuning the frequency of a laser field that couples
the ground state to two excited states, the phase-sensitive
coherence between the two upper levels, which is provided
by the ODRDC process, adds an equivalent “population”
to one of the two excited states. When this coherence is
strong enough, an incoming probe field resonant with the
transition between a meta-stable level and one of the two upper
levels can be amplified via a stimulated emission process. A
similar quantum interference effect provides the framework for
electromagnetically induced transparency (EIT) [3], which has
attracted a lot of attention and has been confirmed experimen-
tally [4]. The scheme proposed to observe EIT uses a Fano-
type interference [5], [6] between a pair of coherently prepared

dressed states. In this paper, we will restrict our comparison
to Harris’s EIT scheme [3] unless otherwise indicated. Since
the early proposal for studying effects of electronic quantum
interference in semiconductor quantum wells [7], there have
been a lot of researches on EIT and lasing without inversion
in semiconductor systems.

Recently, there has been growing interest in studies of
the propagation of EM waves in disordered and/or periodic
dielectric structures [8]. This interest is partly due to the possi-
bility of observing the localization of EM waves in disordered
dielectric structures [9]−[13] and also to the possible existence
of photonic band gaps in three-dimensional (3D) periodic
dielectric structures [14]−[20]. In analogy to the case of an
electron wave propagating in a crystal, light waves traveling
in periodic structures will be described in terms of photonic
bands with the possibility of the existence of frequency gaps
where the propagation of EM waves is forbidden. In the
original proposal for photonic band structures [16], it was
suggested that the inhibition of spontaneous emission in such
gaps can be utilized to substantially enhance the performance
of semiconductor lasers and detectors. Surprisingly, the very
recently observed black-body-type emission from 3D metallic
photonic crystals displayed unique spectrum [21].

Ebbesen et al. [22] reported a relatively enhanced optical
transmission seen in arrays of subwavelength cylindrical holes
in metallic films. Similar phenomena have been observed in
subwavelength metallic gratings [23] and even in simple planar
metallic films [24]. These enhanced optical transmissions are
believed to be related to light coupling to surface-plasmon-
polariton (SPP) modes in non-structured [24] or structured [25]
metallic films. The observation of tunable localized surface
plasmons was also reported in a nanodot-liquid crystal ma-
trix [26]. In order to understand the physics involved in
the enhanced optical transmission, near-field calculations are
required. The previously-proposed calculational methods in-
clude a modal expansion [25], the Chandezon method [27],
a simplified analytical method [28], and a finite-difference
time-domain method [29]. All these methods are spatially
local and adiabatic in time, thereby neglecting the nonlocal
dynamic relationship [30], [31] between the induced material
polarization and the total EM field in the Maxwell equations,
but can be applied to dielectric host materials in which there
are no free charged carriers. In addition, the absorption from
the longitudinal field due to the induced plasma wave in
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metals [32] has been neglected, which tends to underestimate
the loss of SPP waves propagating along the interface between
air and metals.

In its simplest form an SPP is an EM excitation that propa-
gates in a wave-like fashion along the planar interface between
a metal and a dielectric medium and whose amplitude decays
exponentially with increasing distance into each medium from
the interface [33]−[35]. Thus, an SPP is a surface EM wave,
whose field is confined to the near vicinity of the dielectric-
metal interface. This confinement leads to an enhancement
of the field at the interface [36], resulting in an extraordinary
sensitivity of the SPP to surface conditions. Surface plasmon
polariton-based devices exploiting this sensitivity are widely
used in chemo- and bio-sensors [37]. The enhancement of the
EM field at the interface is responsible for surface-enhanced
optical phenomena such as Raman scattering, second harmonic
generation, fluorescence, etc [33], [38]. The relative ease of
manipulating SPPs on a surface opens an opportunity for their
applications to photonics and optoelectronics for scaling down
optical and electronic devices to nanometric dimensions [39].
The intrinsically two-dimensional nature of SPPs prohibits
them from directly coupling to light. Usually, a surface metal
grating is required for the excitation of SPPs by normally-
incident light through an interaction between SPPs and the
grating. Moreover, since the EM field of an SPP decays
exponentially with distance from the surface, it cannot be
observed in conventional (far-field) experiments unless the
SPP is transformed into light by its interaction with a surface
grating.

In this paper, we will review coherent optical amplification
of a normally-incident and weak radiation field based on
various physical mechanisms, including electronic quantum
interference in a three-level system, field enhancement in a
photonic-crystal cavity and field concentration of a transmitted
near field through a metallic surface grating. The important
role played by a longitudinal field resulting from an induced
three-dimensional plasma wave will also be analyzed.

The rest of the paper is as follows. In Sec. II, we discuss
the effects of electronic quantum interference on optical ab-
sorption through either off-diagonal radiative-decay coupling
or electromagnetically-induced transparency. In Sec. III, we
discuss the photonic band gaps in periodic dielectric struc-
tures and the cavity enhancement of an incident radiation
field used as a coupling field for electromagnetically-induced
transparency in a quantum dot. In Sec. IV, we discuss the
important optical absorption by a longitudinal field inside
conducting materials and its effect on the transmitted near
field. In Sec. V, we discuss the field concentration through a
metallic surface grating and the excitation of surface plasmon
polaritons through the interaction with either a prism or a
grating. The paper is briefly concluded in Sec. VI.

II. ELECTRONIC QUANTUM INTERFERENCE

In Fig. 1(a), we consider a three-level system with two
nearly degenerate upper levels. In this case, the equations for
the density matrix [ρij ] of the system in Fig. 1(a) are [40]

−2β21, 12 ρ22−ΩR
12 Im (ρ12)−2β21, 13 Re (ρ23) = 0 , (1)

−2β31, 13 ρ33−ΩR
13 Im (ρ13)−2β31, 12 Re (ρ23) = 0 , (2)

i (ω21 − ωp) ρ12 − β21, 12 ρ12 +
iΩR

12

2
(ρ22 − ρ11)

+
iΩR

13

2
ρ∗23 − β21, 13 ρ13 = 0 , (3)

i (ω31 − ωp) ρ13 − β31, 13ρ13 +
iΩR

13

2
(ρ33 − ρ11)

+
iΩR

12

2
ρ23 − β31, 12 ρ12 = 0 , (4)

iω32 ρ23 − (β21, 12 + β31, 13) ρ23 +
iΩR

12

2
ρ13

− iΩR
13

2
ρ∗12 − (β31, 12 ρ22 + β21, 13 ρ33) = 0 , (5)

where ΩR
ij = 2eEprij/h̄ is the resonant Rabi frequency, Ep and

ωp are the amplitude and tfrequency of the probe field, h̄ωij

is the energy separation between levels i and j, and βij,mn

stands for the diagonal and off-diagonal radiative-decay rates
between levels i and j coupled by a dipole moment erij .

In Fig. 1(b), we consider another three-level system with the
upper two levels resonantly coupled by a pump laser with a
frequency ωL and an amplitude EL. In this case, however, the
density-matrix equations for the dressed system in Fig. 1(b)
are [40]

−Γ2 ρ22 − ΩR
12 Im (ρ12)−

√
Γ2Γ3 Re (ρ23) = 0 , (6)

−Γ3 ρ33 − ΩR
13 Im (ρ13)−

√
Γ2Γ3 Re (ρ23) = 0 , (7)

i (ω21 − ωp) ρ12 −
1
2

Γ2 ρ12

+
iΩR

12

2
(ρ22 − ρ11) +

iΩR
13

2
ρ∗23 −

1
2

√
Γ2Γ3 ρ13 = 0 , (8)

i (ω31 − ωp) ρ13 −
1
2

Γ3 ρ13 +
iΩR

13

2
(ρ33 − ρ11)

+
iΩR

12

2
ρ23 −

1
2

√
Γ2Γ3 ρ12 = 0 , (9)

iω32 ρ23 −
1
2

(Γ2 + Γ3) ρ23

+
iΩR

12

2
ρ13 −

iΩR
13

2
ρ∗12 −

1
2

√
Γ2Γ3 (ρ22 + ρ33) = 0 , (10)

where Γ2 = Γ(0)
3 sin2 θ and Γ3 = Γ(0)

3 cos2 θ are the decay
rates from dressed levels 2 and 3 to the lower continuum
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β21, 13

β31, 12

2β31, 13

2β21, 12

|1>

|2>
|3>

ωp ωp

Γ3 
(0)

|1>

|2>

|3>

ωL

ωp

(a) (b)

Fig. 1. Schematic illustrations for the effects of (a) off-diagonal radiative-
decay coupling (ODRDC) and (b) electromagnetically-induced transparency
(EIT) in the bare-atom picture. Here, ωL stands for the frequency of a strong
coupling laser field, ωp stands for the frequency of probe field. The notations
|1 >, |2 > and |3 > represent different energy states in the bare-atom
picture. The dashed arrows denote the decay processes, while the solid arrows
represent the excitations induced by the probe fields. The double hollow
arrow represents the level coupling established by an external laser field. The
symbols βij,mn are defined in the text. Γ

(0)
3 is the decay rate to a continuum

state outside of the system. The ODRDC in (a) is denoted by the horizontal
dashed line.

direct

|1>

|2>

|3>

indirect

ωsp

|1>

|2>

|3>

indirect

ωsp

direct

(a) (b)

Fig. 2. Schematic illustrations for the quantum interference between the direct
absorption path and indirect absorption path involving a β21, 13-ODRDC
process in (a) and a β31, 12-ODRDC process in (b), where ωsp and the
horizontal hollow arrows stand for the spontaneous photon emitted by radiative
decay of one electron and then absorbed by the other electron. The symbol ©
with “−” at its center stands for an electron. This type of quantum interference
is responsible for the zero absorption from the ground level to two nearly-
resonant upper levels at a certain frequency.

state, ω21 = [ω(0)
21 + ω

(0)
31 + ωL − ΩR]/2, ω31 = [ω(0)

21 +
ω

(0)
31 + ωL + ΩR]/2, r12 = −r

(0)
13 sin θ, r13 = r

(0)
13 cos θ,

ΩR =
√

(ω(0)
32 − ωL)2 + (Ωc

23)2, ΩR
ij = 2eEprij/h̄, Ωc

23 =
2eELr

(0)
23 /h̄ and tan 2θ = Ωc

23/(ωL − ω
(0)
32 ). The superscript

(0) refers to the corresponding quantities in the bare-atom
picture.

As shown in Fig. 2 for the system in Fig. 1(a) we under-
stand that the electronic quantum interference comes from the
superposition of a direct absorption path to one upper level
and an indirect absorption path through another upper level
followed by an off-diagonal radiative decay and ending in the
same final state as the direct path [41]. This electronic quantum
interference is formally described by |A + B exp(iφ)|2 with
transition amplitudes A and B and phase difference φ for the
two different paths. When ω21 < ωp < ω31, φ = π can be
reached and A = B can be satisfied at the same time. This
leads to a complete destructive interference which gives rise
to a zero absorption.

As shown in Fig. 3 for the system in Fig. 1(b), we see that
the existence of the electronic quantum interference is also due

|0d>

|2d>

|3d>

direct

|1d>
indirect

UF
32

|0d>

|2d>

|3d>

direct

|1d>
indirect

UF
32

|0d>

|2d>

|3d>

direct

|1d>
indirect

UF
23

|0d>

|2d>

|3d>

direct

|1d>
indirect

UF
23

Fig. 3. Schematic illustrations for the quantum interference in the dressed-
atom picture between the direct absorption path and indirect absorption path
involving two different Fano-type couplings in (a) and (b), where the vertical
hollow arrows stand for the electrons pumped from the continuum state |0d >
(reservoir shown by the shaded region) to the ground state |1d >. The Fano-
type interaction UF

32 = UF
23 couples two discrete states through a decay

to the continuum state, which transfers energy from a decayed electron to
the excitation of an electron from the continuum state to one of the two
upper dressed states |2d > and |3d >. This type of quantum interference is
responsible for the EIT from the ground level to one of the two laser-coupled
upper levels in the bare-atom picture, as shown in Fig. 1(b).
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Fig. 4. Calculated scaled absorption coefficient in arbitrary unit (a.u.) as
a function of the probe photon energy h̄ωp for the ODRDC effect without
electron scattering.

to a superposition of a direct absorption path and an indirect
absorption path mediated by an energy transfer which takes
energy from a decayed electron to the continuum and gives it
back to another electron excited out of the continuum via a
so-called Fano coupling [5], [40]. To maintain the |1d >-level
population, a pumping laser is needed for moving electrons to
|1d > from the continuum state |0d >.

For the numerical results, shown in Fig. 4 [41], we choose
h̄ω31 = 1.5 eV , h̄ω32 = 8× 10−4 eV , r12 = r13 = 6 Å, and
Ep = 1 kV/cm for the system in Fig. 1(a). In the absence of
electron scattering, we find a zero absorption of the probe field
at ωp = (ω21+ω31)/2 as a result of the equal dipole moments
r12 = r13. This directly comes from the superposition of the
direct absorption path and indirect absorption path, as shown in
Fig. 2. The peak width is determined by the power broadening
proportional to ΩR

12 = ΩR
13.

Electron scattering is found to create a dephasing to
the induced optical coherence ρij with i 6= j. When
the dephasing rate becomes comparable to the Rabi fre-
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quantum interference, and the electrons relax from the
nonequilibrium state to their final equilibrium state.
Here, only the normal direct transition from E1(k) to
E2(k) or to E3(k) is expected to be seen. However, if
quantum interference is excluded in Eqs. (22) and (23),
we see only an oscillating function around zero in Fig.
4(a), which dies away after the coupling laser is turned
off. In Fig. 4(b) we find that, when quantum interference

is excluded, only one normal direct transition from E1(k)
to E2(k) is seen, while another normal direct transition
from E1(k) to E3(k) is too weak to be seen. When quan-
tum interference is included, we observe the two different
interference processes illustrated in Fig. 3, which result
in one positive and one negative peak in Fig. 4(b). The
positions of these two peaks are indicated by \vp2 (for the
negative peak) and \vp1 (for the positive peak). More-
over, we find that

vp6 5 ~VR 7 vc!/2 6 V32 6 dcoul
6 , (31)

where \dcoul
6 stands for the many-body correction to the

\vp6 peak positions. These are different from the previ-
ous results1,2 for the steady state in the rotating-wave ap-
proximation by a factor of 1/2 and a negative sign in
\vp2 . They are the results of the two required phase
conditions for the quantum interference among the three
off-diagonal density-matrix elements as described in Fig.
3. The factor of 1/2 comes from the dynamic effects of the
coupling laser and the probe field, while the sign change

Fig. 3. Sketch of the two possible processes of quantum inter-
ference in the coupled asymmetric quantum well, where the
thick arrow represents the coherent transition and the thin ar-
rows represent the probe-field-induced indirect transitions.

Fig. 4. Plots of (a) the dynamics of one negative absorption peak
with \vp 5 30 meV and Tpulse 5 612 fs and (b) the time-
averaged absorption coefficient with (solid curve) or without
(dashed curve) quantum interference for square probe pulse du-
ration Tpulse 5 200 fs in the same system as described in Fig. 2.
Here, we have taken t12(k; t) 5 132 fs, t13(k; t) 5 36 fs, and tD
5 0.

Fig. 5. Plots of (a) the time-averaged optical spectrum with dif-
ferent coupling laser strengths Ec 5 100, 200, 300, 400 kV/cm,
and (b) the time-averaged optical spectrum with various detun-
ings D(\vc) 5 220, 210, 0, 10, 20 meV in the same system as
described in Fig. 2. Here, we have taken t12(k; t) 5 132 fs,
t13(k; t) 5 36 fs, Tpulse 5 200 fs, and tD 5 0.

D. Huang and D. A. Cardimona Vol. 15, No. 5 /May 1998/J. Opt. Soc. Am. B 1583

Fig. 5. Plot of the time-averaged optical spectrum with different coupling
laser strengths EL = 100, 200, 300 400 kV/cm. Here, we have taken
T = 4 K, LW = 150 Å, n2D = 1.5 × 1012 cm−2 (doping in the well),
h̄ωL = E3(0) − E2(0), τ23(k; t) = 28 fs, τ rel

j (k; t) = 45 fs for
j = 1, 2, 3, τ12(k; t) = 132 fs, τ13(k; t) = 36 fs, Tpulse = 200 fs
and tD = 0.

quency Ωc
23 of the coupling laser, the electronic quan-

tum interference in the system in Fig. 1(b) will be de-
stroyed [42]. However, the suppressed electronic quantum in-
terference will be recovered when the intensity of the coupling
laser is increased, as shown in Fig. 5, where a three-level
Al0.25Ga0.75As/GaAs/Al0.4Ga0.6As asymmetric quantum well
is considered [42].

III. PHOTONIC-CRYSTAL CAVITY

For a three-dimensional dielectric photonic crystal, the band
structure of photons is determined by the Maxwell equations

~∇×
[

1
εr(~r)

~∇× ~H(~r)
]

=
ω2

c2
~H(~r) , (11)

where the dielectric function εr(~r) takes values of either 1 for
air or εb for the dielectric medium, and is a periodic function
in the three-dimensional space. Since εr(~r) is periodic, we can
use Bloch’s theorem to expand the transverse ~H field in plane
waves [20],

~H(~r) =
∑

~G

2∑
λ=1

h~G,λ~eλ exp[i(~k + ~G) · ~r] , (12)

where ~k is a wave vector in the Brillouin zone of the lattice,
~G is a reciprocal-lattice vector, and ~e1, ~e2 are unit vectors
perpendicular to ~k+ ~G. Substituting Eq. (12) into Eq. (11) leads
to the following equation for an eigen-vector h~G,λ∑

~G′,λ′

Mλ,λ′

~G, ~G′h~G′,λ′ =
ω2

c2
h~G,λ , (13)

where
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c

nLo /XL

r x M R
Fig. 1. Photonic band structure for close-packed air spheres in
the sc lattice. eb = 13, e = 1, and = r/6, with 750 plane waves
(solid curves) by the E method. Also plotted are the lowest six
bands, calculated with only 81 plane waves (overlapping dashed
curves) for comparison. c- c/V, where e is the spatial average
of e(r). The inset shows the path in the sc BZ.
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Fig. 2. Photonic band structure for overlapping air spheres in
the sc lattice. b = 13, = 1, and ,/ = 0.81. The E method was
used with 750 plane waves.

for air spheres in the fcc and the diamond structures. In
Fig. 1 we plot the band structure for a dielectric contrast
of 13 when the spheres are closely packed, i.e., for , = v/6.
When the spheres overlap, the direct transition gap be-
tween the fifth and the sixth bands widens and becomes a
full gap at 13 0.66. It is also interesting to note that
IlEril 1.1 when the gap opens. The 5-6 band gap peaks to
-7% near 3- 0.81. We plot the band structure for this
case in Fig. 2. The gap vanishes near /G 3 0.92, where
the radius of the spheres R- 4.2. When R = r =
4.44, the background medium breaks up into isolated
star-shaped islands with six spikes along the Cartesian
axes. Both the a- and the b-type materials are connected
for T c R, ' vV2-, and the structures for which there is a
gap fall in this region (Fig. 3). On the other hand, the
second and third bands do not separate enough to yield a
complete gap when R is varied.

For / > r/6, we divided the sc unit cell into a 400 
400 400 grid to FT E(r). For the case /3 0.81, we
tested the effect of grid size on the 5-6 band gap and
found it to be negligible. With an 800 800 x 800 FT
grid and 1503 plane waves, the E method yields a 5-6
band gap of 6.64%, whereas the H method yields 5.94%; the
results are the same, to within 3 digits, as those obtained
with the 400 x 400 x 400 grid. On the other hand, the

gap tended to increase with either method as N was in-
creased, so we are quite confident of the presence of a gap
for this structure.

4. SCAFFOLD STRUCTURES
The results of Section 3 warrant the investigation of a
similar structure with the same topology but a simpler ge-
ometry. By this we mean a structure that is obtained
from the overlapping-spheres structure by a continuous
deformation without cutting or pasting. The possibilities
are clearly endless, but two stand out in particular. One
structure is rods of square cross section along the Carte-
sian axes (Fig. 4). In the simplest such structure the
faces of the rods are oriented parallel to those of the unit
cell. Structures with all flat faces at right angles are
amenable to fabrication at a submicrometer scale by epi-

0 -

(D -

c -

3 3.5
I . . II

4 4.5
Rs

Fig. 3. Relative photonic band gap versus the radius R of air
spheres in the sc lattice. b = 13 and e = 1. R = ir corre-
sponds to the close-packed case, and at R, = GrN the background
medium becomes disconnected.

Fig. 4. Square-rod structure. A 3 3 3 section is shown.

l . .i . . . . . .

H. S. SUfer and J. W Haus

I

Fig. 6. Square-rod structure. A 3×3×3 section is shown. Image used with
permission of authors of [43].

Mλ,λ′

~G, ~G′ = |~k+ ~G||~k+ ~G′|ε−1
~G, ~G′

[
~e2 · ~e2′ −~e2 · ~e1′

−~e1 · ~e2′ ~e1 · ~e1′

]
(14)

and ε~G, ~G′ = εr(~G− ~G′) is the Fourier transform of εr(~r).

For a simple-cubic lattice of square-rods, as shown in Fig. 6,
the photon dispersion relation [43]) is displayed in Fig. 7,
where an absolute band gap is denoted by the shaded bar in
the figure.

When a single defect is intentionally introduced in the
photonic crystal, a photonic-crystal cavity is formed. Within
the cavity, photon modes are localized with energy inside
the band gap. As a generalization of Eq. (11), the Maxwell
equations become [44]

~∇×
{[

1
εr(~r)

+ U(~r)
]

~∇× ~H(~r)
}

=
ω2

c2
~H(~r) , (15)

where U(~r) = −εd(~r)/{εr(~r)[εr(~r)+ εd(~r)]} and εd(~r) is the
dielectric function of the cylindrical defect. In Fig. 8, we show
a top view for the calculated cavity-field distribution in a two-
dimensional photonic crystal with punched holes in a dielectric
film, from which we can clearly see the localization of the
cavity radiation field inside the defect region. This spatial
localization of the field greatly enhances the amplitude of the
field inside the cavity.

The great enhancement of the cavity radiation field inside
the cavity can be used as a strong coupling field to produce
an electronic quantum interference in quantum dots placed in
the cavity, as shown in Fig. 9, where an incident light field
is expected to be amplified as much as a million times by a
high-Q cavity and then used as the coupling field resonant
with two upper levels in a quantum dot.
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a,

_ Hashin-Shtrikman boundsX
Effective Medium result

*-o--- Plane-Wave result

0 0.5

P13

Fig. 7. Eeff calculated with the plane-wave method () for the
square-rod structure in the sc lattice. Also plotted are the
Hashin-Shtrikman bounds (Maxwell-Garnett results) (long
dashed curves) and the effective-medium result (solid curve).
,613 i the volume fraction of the e = 13 material.

cM

0.,
C)

:3

0

Fig. 8. Photonic bands for the square-rod structure in the sc
lattice. b = 13, = 1, and p = 0.82.

the fcc lattice are expressed as

Gf~0 = (nx n -,n2 )- n , ny, n all even or all odd,
afc

(17)

whereas the reciprocal vectors of the sc lattice are

1r X M R

rate into odd and even types, since there is no mixing be-
tween the two types of Bloch functions that arise from the
matrix elements e(G - G') with G - G' odd. Hence

Eken(r, t) = exp[i(k. r - COkt)] E,,k(G)exp[i(G r)],
even G

(21)

EN (r, t) = exp[i(k r - Wnkt)] Ek(G)exp[i(G r)].
odd G

(22)

This separation is used further to reduce the dimensional-
ity by a factor of 2. Hence the problem in the fcc lattice is
solved in two steps; one first expands the fields in the odd
reciprocal basis, then expands the fields in the even basis,
and then combines the odd and even bands. This tech-
nique indeed yields the same band structure as that ob-
tained when the complete fcc reciprocal basis is used.
Overall, however, treating the problem in the sc lattice is
more economical by a factor of approximately 2.

The band structure calculated with the E method
for 750 plane waves is plotted in Fig. 11. It is worth not-
ing a number of interesting features for comparison. In
the sc BZ Xrc = (0.5,0,0)2,r/a, and in the fcc BZ
Xfc = (1,0, 0)27r/afCC. Noting that a C = 2a,,, we find that
XfC = X.. On the other hand, R,, = (0.5,0.5,0.5)2i7/ac =

0
U,

Density of States
Fig. 9. Density of states computed from a random sample of
300 k points in the BZ for the same dielectric structure as in
Fig. 8.

mx, my, m, any integers. (18)
0

Noting that afcc = 2a0 c, one obtains

Gsc = (mx, my, m) -2 
afcc

mX, my, mz any integers,

(19)

mx', my', m,' even integers.

(20)

Thus the fcc reciprocal lattice has twice as many points.
Eliminating the odd points, one obtains the sc reciprocal
lattice. Hence (Gfcc) = 0 for odd Gfcc and (Gfcc) =
e(G,,) for even Gec. An immediate consequence of this
property is that the Bloch functions in the fcc lattice sepa-

0 0.05 0.1 0.15 0.2

N_ 1/3

Fig. 10. Photonic band gap versus N-113 for the same
as in Fig. 8 with the E and the H methods.

Gsc = (mx, my, mz) a ,

A23

6. 2

. A23

structure

mmmz=

H. S. Szuer and J. W Haus

Q, = (mx' M I M I ) 2-7r ,I Y , z a fc.

Fig. 7. Photonic bands for the square-rod structure in the simple-cubic lattice
with ε2 = 13 for dielectric, ε1 = 1 for air and β = 0.82. Image used with
permission of authors of [43].

Top View
Cross Section

Glass Slide

InP (60nm)
InGaAs (90nm)
InP (60nm)

holes cavity

Computer Simulation of EM Field Distribution in 2D Photonic Crystal with Single-Defect Cavity

Cavity Field Enhancement

Fig. 8. Top views of a two-dimensional photonic-crystal cavity (upper panel)
formed by removing a hole from a dielectric film, and the spatial distribution
of the electric field (lower panel) in the photonic crystal formed by using
the dielectric film (εr = 12) punched with an array of holes (εr = 1), where
εd = 12 and the spread of the cavity radiation field inside the photonic crystal
is denoted by a circle.

Put Quantum Dots, Tuned to Cavity Resonance, in Microcavity

Quantum Dots in 2D, 3D Cavities

3D Photonic Crystal with Cavity filled with Quantum Dots

Coupling 
Field 

(Signal)

Probe 
Field

Conduction Band

Valence Band

Quantum Dot

Ec1

Ec2

Ev1

ΩR

EIT in Single Quantum Dot

EG

Cavity is used to amplify the signal field as much as 10 6

Fig. 9. The upper panel illustrates self-assembled InAs/GaAs quantum
dots buried inside a two-dimensional photonic-crystal cavity. The lower panel
shows the band structure for one of buried quantum dots, where two upper
conduction sublevels are resonantly coupled by a strong cavity radiation field
and a probe field is coupled to the second conduction sublevel and the top
valence sublevel, similar to the system in Fig. 1(b).

IV. LONGITUDINAL-FIELD EFFECT

For a system with a half space of air (z < 0) and a half space
of a doped semiconductor (z > 0) toped with a conducting
sheet at z = 0, the formal solution to the Maxwell wave
equations can be formally written as

[
~E(~q‖, ω, z)
~H(~q‖, ω, z)

]
= exp(iβT

1 z)

[
~AT

(+)(~q‖, ω)
~BT

(+)(~q‖, ω)

]

+exp(−iβT
1 z)

[
~AT

(−)(~q‖, ω)
~BT

(−)(~q‖, ω)

]
for z < 0 , (16)

and

[
~E(~q‖, ω, z)
~H(~q‖, ω, z)

]
= exp(iβT

2 z)

[
~CT

(+)(~q‖, ω)
~DT

(+)(~q‖, ω)

]

+exp(iβL
2 z)

[
~CL

(+)(~q‖, ω)
0

]
for z > 0 , (17)

where the complex transverse wave numbers βT
1,2 are given

by the transverse dielectric function εT1,2(~q‖, β
T
1,2, ω) through

[
{βT

1 (~q‖, ω)}2
{βT

2 (~q‖, ω)}2
]

=
ω2

c2

[
1

εT2 (~q‖, βT
2 , ω)

]
− q2

‖ . (18)

Here εT1 (~q‖, βT
1 , ω) = 1 is taken for the air side. On the

other hand, the complex longitudinal wave number βL
2 inside

the doped semiconductor is determined by the zero of the
longitudinal dielectric function, i.e. εL2 (~q‖, βL

2 , ω) = 0. The
transverse (T) field is perpendicular to ~q = (~q‖, β), while the
longitudinal (L) field is parallel to ~q.
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In the presence of a conducting sheet at the interface z =
0, the boundary conditions of the fields { ~E, ~H} = { ~ET +
~EL, ~HT}are [45]

~ET
x,y(~q‖, ω, 0+)+ ~EL

x,y(~q‖, ω, 0+) = ~ET
x,y(~q‖, ω, 0−) , (19)

εT2 (~q‖, βT
2 , ω)]ET

z (~q‖, ω, 0+)− ET
z (~q‖, ω, 0−)

=
1
ε0

[
ρs(~q‖, ω)− iqxP x

s (~q‖, ω)− iqyP y
s (~q‖, ω)

]
, (20)

HT
x (~q‖, ω, 0+)−HT

x (~q‖, ω, 0−)

= −iωP y
s (~q‖, ω) + αy

s (~q‖, ω) , (21)

HT
y (~q‖, ω, 0+)−HT

y (~q‖, ω, 0−)

= iωP x
s (~q‖, ω)− αx

s (~q‖, ω) , (22)

HT
z (~q‖, ω, 0+) = HT

z (~q‖, ω, 0−) , (23)

where ~Ps, ρs and ~αs are the sheet polarization, sheet charge
density and sheet current density, respectively. The existence
of the longitudinal field inside the doped semiconductor bulk
requires a supplementary boundary condition [45], given by

−iωε0
[
εT2 (~q‖, βT

2 , ω)− εb
]
ET

z (~q‖, ω, 0+)

+iωε0εbEL
z (~q‖, ω, 0+)

= i~q‖ ·

[
~αs(~q‖, ω) +

∂ ~Ps(~q‖, ω)
∂t

]
. (24)

Considering the rotational symmetry of the system, we can
take qy = 0 for our calculation. Therefore, the transfer matrix
becomes [32] (see top of the next page)

where qx = (ω/c) sin θi, θi is the incident angle, χ̄s = χ̄∗
s +

(εs − 1)∆L, εs and ∆L are the sheet dielectric constant and
thickness, and χ̄∗

s (qx, ω) will be defined below. By using the
matrix in Eq. (24), the solution for the s-polarization fields can
be expressed as


BT

x

BT
y

CT
x

CT
y

CL
x


s

= M−1
t ⊗


0

−Ay

(χ̄s − iβT
1 c2/ω2)Ay

0
0

 , (26)

and the solution for the p-polarization fields is expressed as


BT

x

BT
y

CT
x

CT
y

CL
x


p

=
(

1
ωε0

)
M−1

t ⊗


−βT

1 Ay

0
0

(βT
1 χ̄s − i)Ay

0

 . (27)

Based on these solutions, the square ratios of the reflected field
(r) and the transmitted field (t) to the incident field for both
s- and p-polarization are[

Frs(qx, ω)
Fts(qx, ω)

]

=

 (1+|qx/βT
1 |

2)|BT
x |

2+|BT
y |

2

A2
y

|CL
x +CT

x |2+|CT
y |2+|(βL

2 /qx)CL
x−(qx/βT

2 )CT
x |2

A2
y


s

, (28)

[
Frp(qx, ω)
Ftp(qx, ω)

]

=
(

ε0
µ0

)  1+|qx/βT
1 |

2)|BT
x |

2+|BT
y |

2

A2
y

|CL
x +CT

x |2+|CT
y |2+|(βL

2 /qx)CL
x−(qx/βT

2 )CT
x |2

A2
y


p

.

(29)

For the doped semiconductor, its optical properties are
described by the longitudinal and transverse dielectric func-
tions [45]

εL2 (qx, qz, ω)
εb

= 1− n3De2

ε0εbm∗[ω(ω + iγ0)− ξ(q2
x + q2

z)]
,

(30)

εT2 (qx, ω)
εb

= 1− n3De2

ε0εbm∗ω(ω + iγ0)
, (31)

where ξ = 3v2
F/5 and vF = h̄(3π2n3D)1/3/m∗. On the other

hand, the sheet optical properties are described by the sheet
polarizability [46]

χ̄s(qx, ω) = − n2De2

ω(ω + iγ′0)ε0m∗
s

+ (εs − 1)∆L . (32)

In Fig. 10, we choose n3D = 1017 cm−3, m∗/m0 =
0.067 m0, εb = εs = 12, ∆L = 30 Å, n2D = 1.326 ×
1013 cm−2 and m∗

s = 0.024 m0. Other parameters are
indicated in the figure captions. Figure 10 displays Ftp for
the p polarization as a function of h̄ω. Results for p polar-
ization are compared for three different cases: (1) includ-
ing both a longitudinal field (LF) and a conducting sheet
(solid curve); (2) including only a conducting sheet but
not a longitudinal field (dash-dot-dotted curve); (3) includ-
ing only a longitudinal field but not a conducting sheet,
(dashed curve). We expect to see only one resonance around
h̄Ωpl

3D = 13.1 meV in Ftp. In the absence a longitudinal
field, the resonant frequency of Ftp is obtained by minimizing
|<e

{
βT

2 + βT
1 εT2 + iβT

1 βT
2 χ̄s(qx, ω)

}
| at ω = ωr. In Fig. 10,

the peak of the dash-dot-dotted curve reflects the resonance
determined by ω = ωr. After the longitudinal field is included,
the peak strength (solid curve) is reduced due to the strong
absorption by the longitudinal 3D plasma wave, and its peak
position is slightly shifted down. On the other hand, the peak
strength of the dashed curve is significantly increased when
the conducting sheet is excluded due to absence of the strong
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Mt =


1 0 −1 0 −1
0 1 0 −1 0
0 −χ̄s − iβT

1 c2/ω2 0 −iβT
2 c2/ω2 0

−χ̄s − i/βT
1 0 −iεT2 /βT

2 0 0
0 0 (qx/βT

2 )(εT2 − εb) + iqxχ̄∗
s 0 (βL

2 /qx)εb + iqxχ̄∗
s

 , (25)

8 12 16 20 24
0.0

0.2

0.4

0.6

hγ0=1 meV
hγ,

0=1 meV
θi = 60o

 

 F tp

hω    ( meV )

 with both LF and InAs
 without LF, with InAs
 with LF, without InAs

Fig. 10. Calculated Ftp for the p polarization as a function of the incident
photon energy h̄ω with θi = 60o, h̄γ0 = 1 meV , and h̄γ′0 = 1 meV . The
results of Ftp are compared for three different cases: (1) including both a
longitudinal field (LF) and an InAs conducting sheet (solid curve); (2) without
a longitudinal field but with an InAs conducting sheet (dash-dot-dotted curve);
(3) without an InAs conducting sheet (n2D = 0) but with a longitudinal field
(dashed curve).

reflection by the sheet current. In addition, the peak position
of the dashed curve is shifted down due to the excitation of
the longitudinal 3D plasma wave with an energy slightly lower
than h̄Ωpl

3D.

We choose the same parameters for the calculation in
Fig. 11. From it we see the effects of a conducting sheet
and a doped bulk on the angular distribution as a function of
θi. Results for p polarization are compared for four different
cases: (1) with a longitudinal field, a conducting sheet and a
doped bulk (solid curve); (2) with a conducting sheet and an
undoped bulk (dash-dot-dotted curve); (3) with a longitudinal
field and a doped bulk but without a conducting sheet (dashed
curve); (4) with a conducting sheet and a doped bulk but
without a longitudinal field (dotted curve). From Fig. 11 we
see that free electrons in the doped bulk increase Ftp over that
of the undoped bulk at θi = 0o. When θi = 90o, Ftp = 0. The
difference in values of Ftp at θi = 0o for doped and undoped
bulk is caused by free electrons, which leads to |εT2 | � εb for
the doped bulk compared with εb of the undoped bulk. The
inclusion of the conducting sheet greatly reduces Ftp due to
strong reflection. The longitudinal field only slightly reduces
Ftp when θi > 20o. Ftp > 1 (dashed curves) is seen when
conducting sheet is absent, as well as θi < 30o.

0 10 20 30 40 50 60 70 80 90
0.0

0.5

1.0

1.5

hγ0=1 meV
hγ,

0=1 meV
hω=13.1 meV

 

 

F tp

θi    ( degree )

 with both LF and InAs
 undoped, with InAs
 with LF, without InAs
 without LF, with InAs

Fig. 11. Calculated Ftp for the p polarization as a function of θi with
h̄ω = h̄Ωpl

3D = 13.1 meV , h̄γ0 = 1 meV , and h̄γ′0 = 1 meV . The results
of Ftp are compared for four different cases: (1) including both a longitudinal
field and an InAs conducting sheet (solid curve); (2) with an undoped GaAs
bulk (n3D = 0) and with an InAs conducting sheet (dash-dot-dotted curve);
(3) without an InAs conducting sheet but with a longitudinal field (dashed
curve); (4) without a longitudinal field but with an InAs conducting sheet
(dotted curve).

V. SURFACE-PLASMON-POLARITON

Considering a smooth air-metal interface, if the longitudinal
field is neglected inside the metal with conductivity σc →∞,
we can solve the Maxwell wave equations along with proper
boundary conditions. In the absence of a longitudinal field and
a conducting sheet at the interface, Eqs. (26) and (27) lead us
to the following analytical solutions for the transmitted and
reflected fields with p- and s-polarization

[
BT

x (qx, ω)
CT

x (qx, ω)

]
p

=
βT

1 (qx, ω)Ay(qx, ω)/(ωε0)
βT

2 (qx, ω) + βT
1 (qx, ω)εT2 (qx, ω)

×
[

βT
2 (qx, ω)− βT

1 (qx, ω)εT2 (qx, ω)
2βT

2 (qx, ω)

]
, (33)

[
BT

y (qx, ω)
CT

y (qx, ω)

]
s

=
Ay(qx, ω)

βT
1 (qx, ω) + βT

2 (qx, ω)

×
[

βT
1 (qx, ω)− βT

2 (qx, ω)
2βT

1 (qx, ω)

]
, (34)

where {BT
x , BT

y } is related to the reflected field, while
{CT

x , CT
y } is related to the transmitted field. For the p-

polarization, the real part of the pole, i.e. <e[βT
2 (qx, ω) +

βT
1 (qx, ω)εT2 (qx, ω)] = 0, defines the dispersion relation

of the surface-plasmon-polariton (SPP) modes. Assuming a
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2.  Surface-Plasmon-Polariton Modes

A surface plasmon is a collective excitation 
of electrons localized at the interface 
between a conductor and an insulator.

metal

dielectric E-field

Charge
Density
Wave

Fig. 12. The upper panel illustrates the electric-field distribution for surface-
plasmon-polariton modes, and the lower panel illustrates the charge-density
wave for localized surface-plasmon mode.

lossless metal for ω � Ωpl
3D, we simply take εT2 (qx, ω) =

1 − (Ωpl
3D/ω)2 < 0. By using the relations βT

1 (qx, ω) =√
(ω/c)2 − q2

x and βT
2 (qx, ω) = i

√
q2
x − (ω/c)2εT2 (qx, ω),

we get the in-plane wave number of SPP modes [47]

kspp =
ω

c

√
1− (Ωpl

3D/ω)2

2− (Ωpl
3D/ω)2

. (35)

In the limit of kspp →∞, we arrive at the localized surface-
plasmon (SP) mode [34] with Ωsp = Ωpl

3D/
√

2. The SP mode is
a plasmon excitation that propagates in a charge-density-wave
like fashion along the planar interface between a dielectric
medium and a metal, whose associated field amplitude decays
exponentially with increasing distance into each medium from
the interface [47], as shown in Fig. 12. The dipole feature on
the interface allows it to couple to the incident radiation field,
creating SPP modes. The SPP modes change the incident
radiation field into the transmitted near field inside the metal.

In the case of a metal film having two interfaces with
air, the previous SP mode is split into one symmetric (+)
and one antisymmetric (-) SP modes, given by Ω±

sp =
(Ωpl

3D/
√

2)
√

1± exp(−|qx|d). Here d is the film thickness.

The excitation of the near field of SPP modes requires a
significant momentum kspp along the interface [34]. A simple
planar interface cannot satisfy the condition. However, when
the interface is either covered with a prism or patterned with
a grating [34], the near field of SPP modes can be excited by
a normally-incident radiation field on the grating, as shown in
Fig. 13.

For the case with the grating, both reflected and transmitted
fields possess high-order diffraction modes with a momentum
qx + n(2π/a), where n = 0, ±1, ±2, · · · and a is the
period of the grating. In addition, the surface grating on top
of the interface introduces a standing-wave-like feature in the
spatial distribution of the transmitted near field [48], as shown
in Fig. 14. For certain frequency ω of the incident light, the
transmitted near field will be completely restricted within the
gap regions. As a result of the field concentration in the gaps,
we expect a very large enhancement of the transmitted field,

Surface Plasmon Polaritons

A surface-plasmon-polariton is a localized, coupled 
electromagnetic field/charge-density oscillation, 
which may propagate along an interface between 
two media with a loss.

Prism Coupling

dielectric
metal

Diffraction Coupling

dielectric
metal

Grating  or 
Patterned Surface

Incident Light Incident Light

Fig. 13. The left panel illustrates the prism coupling for the excitation of SPP
modes, while the right panel illustrates the grating coupling for the excitation
of SPP modes.

interface. In order to distinguish it from 2k0h that is the
phase accumulated when traveling inside the waveguide, let
us callu the ‘‘scattering phase.’’ An interesting result is that
the absorption properties of reflection gratings are com-
pletely governed by the total phasefR : wheneverfR is an
integer times 2p, there is a constructive interference be-
tween all partial reflected waves that tend to cancelr11, pro-
voking a dip inr 0 , indication that some energy is absorbed
by the system, as there is no channel for transmission in this
geometry.

In order to illustrate this result, Fig. 6 shows the relation
betweenfR and the specular reflectance (ur 0u2) as a function
of wavelength, for reflection gratings withd51.75mm, a
50.3 mm, and several values of grooves depth (h, ranging

from h50.2 to 1.0mm). For small values ofh @see, for
example,h50.2 mm, curve ~i!#, total phase is essentially
equal to the scattering phase (u). Therefore, the condition
fR52np occurs very close to the SPP condition. Accord-
ingly, specular reflectance spectrum shows a dip at a wave-
length close to the SPP location. Whenh is increased, the
condition fR52np occurs at longer wavelengths and, ac-
cordingly, the dip in the reflectance redshifts~see curves for
h50.4 and 0.6mm in Fig. 6!.

If we consider even deeper grooves, there is a critical
thickness @for this particular set of parameters forh
'0.8 mm; see curve~iv! in Fig. 6# from which there are two
wavelengths fulfillingf52np and the reflectance shows
two EM resonances: one located at a wavelength close to the
SPP condition, and another one at a much longer wavelength.
The locations of these cavity resonances atl@d can be eas-
ily calculated by realizing that, for this range of frequencies,
u→p, and then the conditionfR52np is equivalent to
sink0h51. If h is further increased, more cavity resonances
will fit inside region II, as recently reported in very deep
sinusoidal gratings.9

There is another interesting feature of these EM reso-

FIG. 6. Total phasefR @panel~a!# and specular reflectance spec-
tra @panel ~b!# as a function of wavelength for a normal incident
plane wave impinging reflection gratings withd51.75mm anda
50.3 mm for different grooves depths:~i! h50.2 mm, ~ii ! h
50.4 mm, ~iii ! h50.6 mm, ~iv! h50.8 mm, and~v! h51.0 mm.
In panel~b! each curve is shifted by11 with respect to the previous
one for a better visualization.

FIG. 7. ~Color! Detailed pictures of theE field over three peri-
ods of reflection gratings with geometrical parametersd
51.75mm, a50.3 mm , and h51.0 mm. The magnitude dis-
played in color scale is the square root of the intensity of the totalE
field normalized to the incomingE field. The two figures corre-
spond to the two resonances appearing in the corresponding reflec-
tance spectrum~see Fig. 6!: ~a! lR51.8 mm and ~b! lR

54.6 mm.

TRANSMISSION AND FOCUSING OF LIGHT IN ONE- . . . PHYSICAL REVIEW B 66, 155412 ~2002!

155412-5

Fig. 14. Plots of the E field over three periods of reflection gratings with
calculation parameters: d = 1.75 µm, a = 0.3 µm and h = 1.0 µm. The
color scale is the square root of the intensity of the total E field normalized
to the incident E field. The two panels correspond to the two resonances with
λR = 1.8 µm for the upper panel and λR = 4.6 µm for the lower panel.
Image used with permission of authors of [48].

which can be used to optically amplify a weakly-incident
radiation field.

VI. CONCLUSION

We have reviewed some possibilities for coherent opti-
cal amplification of a normally-incident and weak radiation
field using different physical mechanisms, including electronic
quantum interference, field enhancement in a photonic crys-
tal and field concentration through surface-plasmon-polariton
modes. Some numerical results have been presented for the
demonstration of these effects. The important effects due
to a longitudinal field associated with the induced three-
dimensional plasma wave inside a doped semiconductor are



9

shown and explained based on a nonlocal and non-adiabatic
model.
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